Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 56(2): 221-229, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214538

RESUMO

PURPOSE: Growing concern exists worldwide about stress-related mental disorders, such as posttraumatic stress disorder (PTSD), often linked to hippocampal dysfunctions. Recognizing this connection, regular light-intensity exercise (LIE)-such as yoga, walking, or slow jogging-may offer a solution. Easily accessible even to vulnerable individuals, LIE has been found to enhance hippocampus-based cognitive functions through the stimulation of neurotrophic factors like brain-derived neurotrophic factor (BDNF). A prior study that demonstrated BDNF's role in extinguishing original fear memory further leads us to propose that a consistent LIE training might drive fear extinction learning, offering potential therapeutic benefits through BDNF signaling. METHODS: Eleven-week-old Wistar rats underwent 4 wk of training under conditions of sedentary, LIE, or moderate-intensity exercise (MOE) after contextual or auditory fear conditioning. Subsequently, fear extinction tests were performed. We then administered intraperitoneal (i.p.) ANA-12, a selective antagonist of tropomyosin receptor kinase B (TrkB), or a vehicle to explore the role of BDNF signaling in exercise-induced fear extinction among the LIE rats. Following the regular exercise training, further fear extinction tests were conducted, and hippocampal protein analysis was performed using Western blotting. RESULTS: Both LIE and MOE over 4 wk accelerated hippocampus-associated contextual fear extinction compared with sedentary. In addition, 4 wk of LIE with i.p. administered vehicle increased hippocampal BDNF and TrkB protein levels. In contrast, i.p. ANA-12 administration fully blocked the LIE-enhanced protein levels and its effect on contextual fear extinction. CONCLUSIONS: Our findings reveal that LIE regimen promotes fear extinction learning, at least partially tied to hippocampal BDNF-TrkB signaling. This suggests that even regular light exercise could alleviate the excessive fear response in anxiety disorders and PTSD, providing hope for those affected.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Extinção Psicológica , Medo , Condicionamento Físico Animal , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/metabolismo , Ratos Wistar
2.
Cereb Cortex Commun ; 4(2): tgad010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323937

RESUMO

Acute mild exercise has been observed to facilitate executive function and memory. A possible underlying mechanism of this is the upregulation of the ascending arousal system, including the catecholaminergic system originating from the locus coeruleus (LC). Prior work indicates that pupil diameter, as an indirect marker of the ascending arousal system, including the LC, increases even with very light-intensity exercise. However, it remains unclear whether the LC directly contributes to exercise-induced pupil-linked arousal. Here, we examined the involvement of the LC in the change in pupil dilation induced by very light-intensity exercise using pupillometry and neuromelanin imaging to assess the LC integrity. A sample of 21 young males performed 10 min of very light-intensity exercise, and we measured changes in the pupil diameters and psychological arousal levels induced by the exercise. Neuromelanin-weighted magnetic resonance imaging scans were also obtained. We observed that pupil diameter and psychological arousal levels increased during very light-intensity exercise, which is consistent with previous findings. Notably, the LC contrast, a marker of LC integrity, predicted the magnitude of pupil dilation and psychological arousal enhancement with exercise. These relationships suggest that the LC-catecholaminergic system is a potential a mechanism for pupil-linked arousal induced by very light-intensity exercise.

3.
Neuroimage ; 277: 120244, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353097

RESUMO

Physical exercise, even stress-free very-light-intensity exercise such as yoga and very slow running, can have beneficial effects on executive function, possibly by potentiating prefrontal cortical activity. However, the exact mechanisms underlying this potentiation have not been identified. Evidence from studies using pupillometry demonstrates that pupil changes track the real-time dynamics of activity linked to arousal and attention, including neural circuits from the locus coeruleus to the cortex. This makes it possible to examine whether pupil-linked brain dynamics induced during very-light-intensity exercise mediate benefits to prefrontal executive function in healthy young adults. In this experiment, pupil diameter was measured during 10 min of very-light-intensity exercise (30% V˙o2peak). A Stroop task was used to assess executive function before and after exercise. Prefrontal cortical activation during the task was assessed using multichannel functional near-infrared spectroscopy (fNIRS). We observed that very-light-intensity exercise significantly elicited pupil dilation, reduction of Stroop interference, and task-related left dorsolateral prefrontal cortex activation compared with the resting-control condition. The magnitude of change in pupil dilation predicted the magnitude of improvement in Stroop performance. In addition, causal mediation analysis showed that pupil dilation during very-light-intensity exercise robustly determined subsequent enhancement of Stroop performance. This finding supports our hypothesis that the pupil-linked mechanisms, which may be tied to locus coeruleus activation, are a potential mechanism by which very light exercise enhances prefrontal cortex activation and executive function. It also suggests that pupillometry may be a useful tool to interpret the beneficial impact of exercise on boosting cognition.


Assuntos
Pupila , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cognição , Função Executiva/fisiologia , Exercício Físico/fisiologia , Córtex Pré-Frontal/fisiologia
4.
Med Sci Sports Exerc ; 53(7): 1425-1433, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433152

RESUMO

PURPOSE: Higher aerobic fitness, a physiological marker of habitual physical activity, is likely to predict higher executive function based on the prefrontal cortex (PFC), according to current cross-sectional studies. The exact biological link between the brain and the brawn remains unclear, but the brain dopaminergic system, which acts as a driving force for physical activity and exercise, can be hypothesized to connect the missing link above. Recently, spontaneous eye blink rate (sEBR) was proposed and has been used as a potential, noninvasive marker of brain dopaminergic activity in the neuroscience field. To address the hypothesis above, we sought to determine whether sEBR is a mediator of the association between executive function and aerobic fitness. METHODS: Thirty-five healthy young males (18-24 yr old) had their sEBR measured while staring at a fixation cross while at rest. They underwent an aerobic fitness assessment using a graded exercise test to exhaustion and performed a color-word Stroop task as an index of executive function. Stroop task-related cortical activation in the left dorsolateral PFC (l-DLPFC) was monitored using functional near-infrared spectroscopy. RESULTS: Correlation analyses revealed significant correlations among higher aerobic fitness, less Stroop interference, and higher sEBR. Moreover, mediation analyses showed that sEBR significantly mediated the association between aerobic fitness and Stroop interference. In addition, higher sEBR was correlated with higher neural efficiency of the l-DLPFC (i.e., executive function was high, and the corresponding l-DLPFC activation was relatively low). CONCLUSION: These results indicate that the sEBR mediates the association between aerobic fitness and executive function through prefrontal neural efficiency, which clearly supports the hypothesis that brain dopaminergic function works to connect, at least in part, the missing link between aerobic fitness and executive function.


Assuntos
Piscadela/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Aptidão Física/fisiologia , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Voluntários Saudáveis , Humanos , Masculino , Teste de Stroop , Adulto Jovem
5.
Biochem Biophys Res Commun ; 534: 610-616, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33228965

RESUMO

Schizophrenia is probably ascribed to perinatal neurodevelopmental deficits, and its onset might be affected by environmental factors. Hypofrontality with glutamatergic and dopaminergic neuronal dysfunction are known factors, but a way to mitigate abnormalities remains unfound. An early enriched environment such as a wheel running in rodents may contribute to the prevention, but its clinical applicability is very limited. From our studies, low-intensity exercise training (LET) based on physiological indices, such as lactate threshold, easily translates to humans and positively affects the brains. Hence, LET during adolescence may ameliorate abnormalities in neurodevelopment and prevent the development of schizophrenia. In the current study, LET prevented sensitization to phencyclidine (PCP) treatment, impairment of cognition, and affective behavioral abnormalities in an animal model of schizophrenia induced by prenatal PCP treatment. Further, LET increased dopamine turnover and attenuated the impairment of phosphorylation of ERK1/2 after exposure to a novel object in the prenatal PCP-treated mice. These results suggest that LET during adolescence completely improves schizophrenia-like abnormal behaviors associated with improved glutamate uptake and the dopamine-induced ERK1/2 signaling pathway in the PFC.


Assuntos
Condicionamento Físico Animal/métodos , Esquizofrenia/prevenção & controle , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Antagonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Ácido Homovanílico/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenciclidina/toxicidade , Fosforilação , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...